RAPID COMMUNICATIONS

PHYSICAL REVIEW E

STATISTICAL PHYSICS, PLASMAS, FLUIDS,
AND RELATED INTERDISCIPLINARY TOPICS

THIRD SERIES, VOLUME 52, NUMBER 1 PART A

JULY 1995

RAPID COMMUNICATIONS

The Rapid Communications section is intended for the accelerated publication of important new results. Since manuscripts submitted
to this section are given priority treatment both in the editorial office and in production, authors should explain in their submittal letter
why the work justifies this special handling. A Rapid Communication should be no longer than 4 printed pages and must be accompanied

by an abstract. Page proofs are sent to authors.

Dynamical properties of a growing surface on a random substrate
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The dynamics of the discrete Gaussian model for the surface of a crystal deposited on a disordered substrate
is investigated by Monte Carlo simulations. The mobility of the growing surface was studied as a function of
a small driving force F and temperature 7. A continuous transition is found from a high-temperature phase
characterized by linear response to a low-temperature phase with nonlinear, temperature-dependent response.
In the simulated regime of driving force the numerical results are in general agreement with recent dynamic

renormalization group predictions.

PACS number(s): 64.60.Fr, 05.70.Jk, 64.70.Pf, 74.60.Ge

There has been considerable progress in recent investiga-
tions of crystalline surface growth [1-3]. It is known [4,5]
that, due to the discreteness and fluctuations (thermal fluc-
tuations and fluctuations in the growth process itself), a crys-
talline surface undergoes a phase transition between a high-
temperature rough phase and a low-temperature smooth
phase. The presence of the quenched disorder in the crystal
(either in the substrate [6] or in the bulk [7]) changes both
the critical temperature and the character of the low-
temperature phase. Below critical temperature, T, the sys-
tem develops a glassy phase characterized by the existence
of many metastable states to which surface configurations are
pinned by disorder. The surface itself remains rough but with
very different static and dynamic properties [6,7] compared
to the roughness above T .

In the present work the dynamic properties of the rough-
ening transition are examined by numerical simulations. The
numerical studies of the static properties were reported else-
where [8]. The simulated system is based on the Hamiltonian
of the discrete Gaussian model which was very successful
[4,5] in describing the surface on a flat substrate:

K
H=52 (hi=h)> M
(6.7)
The sum runs over nearest-neighbor pairs, « is the surface
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tension, and 4; is the height of the surface above the point i
on the two-dimensional (2D) basal lattice. In the case of a
flat surface 4; takes integer values in the units of lattice spac-
ing a in the direction perpendicular to the surface. To simu-
late the disordered substrate a random quenched height d;
chosen uniformly (and independently for each site) in the
interval (—a/2,+a/2] was first assigned to each site. The
height k; then takes the values h;=d;+n;a where n; is any
positive or negative integer. . .

In the continuum limit, h;— ¢(x), d;—d(x), and near
the critical point, Eq. (1) maps to the Hamiltonian of the
random phase sine-Gordon model (RSGM) [4]:

.| kB - - -
%=j dxl 7[V¢(x)]2—gcos{2'n'[¢(x)—d(x)]/a} .
2

The periodic cosine term comes from the lattice discreteness
and is crucial for the existence of a phase transition. The
constant g might be considered as the strength of the peri-
odic pinning potential. The Hamiltonian (2) also describes
other disordered systems: two-dimensional vortex-glass with
a parallel magnetic field [9], charge density waves, and it is
also equivalent to the vortex-free XY model with random
field.
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If the disorder is absent, the predicted value [1] for the
critical temperature of the discrete Gaussian model (1) is of
the order Tx=~1.45, which is close to the results from com-
puter simulations [10]. The behavior of the roughening tran-
sition in the presence of an applied force F was studied in
detail by Noziéres and Gallet (NG) [5]. They found a broad-
ening of the transition due to nonequilibrium conditions with
crossover occurring below T . In the limit F—0, the inter-
face mobility u=uv/F has a sharp jump at Ty, from a finite
value for T>Tx to zero for T<<Tj . If surface is driven by a
small, but finite, driving force it remains rough (with
temperature- and force-dependent mobility) even below
Tg. The NG theory describing the system in the temperature
region close to Ty (“interrupted renormalization” scheme) or
well below Ty (homogeneous nucleation) is in quantitative
agreement with experiments on (0001) interfaces of hcp
“He crystals near the roughening transition [11].

The effects of the disordered substrate on the dynamic
properties in the vicinity of the phase transition were studied
by the dynamic renormalization group (RG) methods [6,12]
based on the Langevin dynamics with a small driving force
F:

9% _ 6%+F+ 3
at 6 3 ®)
Here the Gaussian fluctuating noise & satisfies

(&(x,0)£(x',0))=2T8(x—x')5(t) and the exponentiated
random phase d(f) in Eq. (2) also obeys Gaussian statistics:
(exp{i2md(x)/a}exp{—12wd(x')/a})y=a’5(x—x').  The
theory predicts that above the critical temperature,
T.= /7, the system responses linearly to the applied force,
i.e., the mobility w is finite and independent of F, while
below T, the response is nonlinear, characterized by the
temperature-dependent exponent 7:

(T/T,—1)*  forT>T,,

~ 4
(1-T/T,)°F" forT<T,, @)

um

where {~1.78 is a universal constant and n={|1—T/T,|.
At T=T.= k/m and finite F, Eq. (4) is corrected by a term
~|InF|~¢ so that mobility does not vanish [6]. Also, for
T<T,, Eq. (4) holds only if F~1'~T/Tdl>1_ If this condition
does not hold, the original Eq. (48) in Ref. [6] has to be used.
According to RG analysis, these results are valid close to
T, and in the large L, small g, and small F limit with the
crossover regime characterized by two effective lengths:
Lg"«gé/zll_T/TC| and Lp~F~ 2 (go=mg?/2T? is the bare
coupling constant).

Numerical simulations of the model (3) with the Hamil-
tonian (2) in the limit of small g were recently performed by
Batrouni and Hwa [13] in the context of a randomly pinned
planar flux array. They found no sign of phase transition in
statics but in dynamics they observed a phase transition
which is, however, only in qualitative agreement with RG
predictions (4). The constant ¢ extracted from their data is
significantly smaller than that in Eq. (4). On the other hand,
the behavior of the surface under the influence of a strong
driving force also has many interesting features and it has
been the subject of recent investigations [14].

After a brief description of the simulated dynamics we
will present our numerical results for the dynamics of the
model (1) which maps to the model (2) with coupling con-
stant g of order 1.

Every surface configuration can be completely speci-
fied by a collection of column height variables
C={hy,h,, ...}. The dynamics of the model is determined
by the transition rates W(C—C’) which specify how the
system evolves from a given configuration C into a new
configuration C’. The probability P(C,t) that the surface
has configuration C at time ¢ is determined by the following
master equation in terms of these transition rates:

3,P(C,H)=2, {W(C'—C)P(C',t)—W(C—C")P(C,1)}.
CI
5

Without driving force, the system evolves to equilibrium
and the transition rates satisfy the detailed balance condition:
W(x)=W(—x)e ™, where x=BAH, and AH is change of
energy. The driving force F is included by simply adding a
term AnF to AH in W, ie., W=W(B[AH+ AnF]) where
An is a local change in the height between configurations C
and C'. The commonly used choice of W is the Metropolis
rate:

W(B[AH+ AnF])=min{1,e FAH+ AN (6)

The Monte Carlo (MC) simulations presented in this work
were performed on the two-dimensional square lattice of lin-
ear dimension L =64, and with periodic boundary condi-
tions. The lattice was divided into two sublattices. During the
first half of the time step, all heights #; of one sublattice were
simultaneously updated by increasing or decreasing them
(independently) by one unit keeping the heights of the other
sublattice fixed. The moves are then accepted or rejected
according to the Metropolis rule (6) with Hamiltonian (1)
and constant k=2. In the second half of the time step, the
second sublattice is upgraded keeping the first one fixed.

Starting with the equilibrated configurations saved after
measuring the static properties of the system [8], the force
was turned on by implementing (6). The velocity of the
growing surface averaged over different realizations of the
disorder was monitored as a function of MC steps. Typically,
up to 10* initial MC steps were discarded since the system
requires some time to reach its stationary state characterized
by a uniform velocity. Measurements were performed over
additional MC steps whose lengths depended on the values
of F and T. The length of the runs ranged from 5 X 10* (for
large F and large T) to 10° MC steps (for small F and small
T). The average surface heights (in lattice units a) at the end
of the MC runs were between several thousand steps for
large F and T to several dozen steps for small F and T. For
every MC run, the measurements of the surface velocity
were grouped into several groups (usually about ten) and the
average velocity of these groups with corresponding error
bars is presented in Fig. 1 and Fig. 2. A practical problem in
these simulations is to measure the response of the system to
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FIG. 1. The dependence of the mobility x=uv/F as a function of
temperature for different F. The system size is L =64 and sample
averaging is performed over 50 realizations of disorder. The full
curves are guides to the eye.

very small force because very long MC runs are required in
order to get reliable statistics. We started with the forces of
order 1 and then decreased F gradually toward the lowest
value (F=0.01) for which the data analysis still suggests
that the surface is moving with uniform velocity although the
error bars are much larger compared with the measurements
with larger F and T (see Fig. 2). For smaller values of F we
could not extract reliable statistics within the computer time
available.

Figure 1 shows the behavior of the mobility, u=v/F, as
a function of temperature for different driving forces, F,
while Fig. 2 shows the log-log plot of u versus F for differ-
ent 7. The sample averages were performed over 50 realiza-
tions of the disorder. It is clear from the figures that the
system has a phase transition from the regime at higher 7,
where mobility is finite and independent of temperature and

In(v/F)

In(F)

FIG. 2. The log-log plot of the mobility versus driving force.
The straight lines are the best fits to In(u/F)=a+bln(F) including
only six the smallest values of F for each T in Fig. 1.

FIG. 3. Plot of the coefficient b(T) (circles) from the fitting
equation (see text and Fig. 2). The dotted line is the analytical
prediction (4).

force, to the nonlinear regime at lower temperatures where
m depends on F and T. The transition itself is very broad
and the position of the critical temperature 7', is not very
clear. The straight lines in Fig. 2 are the best fits to the fitting
equations In(v/F)=a(T)+b(T)InF. Only the six lowest values
of F from Fig. 1 were included in the fit: F=0.010,
0.015, 0.025, 0.040, 0.065, and 0.100. The slope of the
lines, or coefficient b, corresponds to the exponent % in for-
mula (4). Figure 3 shows a comparison of the exponent 7
plotted according to Eq. (4) (dotted line) and the correspond-
ing values extracted from the data in Fig. 2 (circles). Note
that at T=T, Eq. (4) has to be corrected with the above-
mentioned logarithmic contribution due to finiteness of F so
that disagreement between the dotted line and the numerical
results is expected at and very close to T, . Generally speak-
ing, there is an agreement between RG methods and the nu-
merical results.

The finite size effects are examined by repeating the simu-
lations for a few temperatures below T, on the system size
L =128 and with sample averages over 25 realizations of the
disorder. No significant difference with respect to the
L =64 results was noticed. This is expected since, according
to RG analysis [6], the size L =64 is already larger than the
effective crossover length: Lz~ 1/\/1E =10 (which is esti-
mated using the smallest simulated value of F).

To summarize, numerical simulations based on the
Metropolis-type dynamics for which the local detailed bal-
ance condition is always satisfied were performed and com-
pared with predictions of RG calculations. The broad transi-
tion becomes sharper as applied force becomes smaller. The
broadening is a consequence of the presence of the spatially
varying pinning potential (due to disorder) with the strong
coupling constant, the applied uniform external force, and (to
a smaller degree) the finite system size.

The comparison of the numerical results and RG predic-
tions suggests that there is a qualitative and to some degree
even quantitative agreement between the two, although nu-
merical results suggest that the critical temperature is shifted
toward higher values in comparison to the RG result. The
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deviation from linear response occurs at temperatures larger
than T, of statics [the numerical value for T, of statics for
model (1) is T,=0.643+0.006 [8]]. This is probably due to
the strong coupling regime where perturbative RG results are
not expected to work. The recent self-consistent, nonpertur-
bative Hartree type calculations for relaxational dynamics
show that the critical temperature slowly increases with g if
g is larger than some characteristic value below which T,
does not depend on g [15]. It is believed that this discrep-
ancy between critical temperatures in statics and dynamics is

an effect of the existence of many metastable states, and it is
also found in other physical systems [16].
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